e-Life@KYC

A school-based STEM curriculum

e-Life: raising enthusiasm for life and value education

e-Life: enhancing environment literacy for the good of our Earth

Target: S.1- S.2

Objectives:

- 1. To nurture students' positive values regarding respect for life and environment
- 2. To promote students' environmental literacy, i.e., understanding, skills and motivation to make responsible decisions regarding environmental protection and conservation for nature, communities and future generations
- 3. To promote self-directed learning (SDL) through technology-enhanced STEM activities

Other collaborative parties:

- 1. Civil Education Committee: "One person, one flower" scheme
- 2. English Language Department: LAC activity making presentation on STEM products
- 3. Home Economics: Tailor-making of a microwavable heat bag

Curriculum framework using "Science" as a leading subject:

Level	S	.2	Scope
Theme	The Commitment of Green	Personal	
Unit	7: Living thing and Air	9: Acid and Alkali	commitment
		11: Force and motion	
Topic	Design and make an	Competition of gas powered	
	environmental-friendly drip	jetboat using vinegar and	
	irrigation device for the growth	eggshell powder as	
	of a pot of flowering plant	environmental-friendly energy	
	(Viola tricolor 三色菫)*	sources	
Subject	Science, Mathematics,	Science, Mathematics, Design	
involved	Computer Literacy, Design	and Technology	
	and Technology		
Level	S	.1	
Theme	The Second Life of Pl	ants 植物的第二生命	
Unit	2: Water	5: Energy	
Topic	Prepare saturated solution for	Design and tailor-make a good	
_	competition, and design and	microwavable heat bag by	
	make an effective dehumidifier	using beans (e.g. Vigna	
	using chemicals and dried	angularis 紅豆) for the elderly	
	leaves (e.g. Phyllanthus		
	<i>emblica</i> 油柑葉)		
Subject	Science, Mathematics,	Science, Home Economics,	Environmental
involved	Computer Literacy, Design	Mathematics, English	and social
	and Technology	_	awareness

*Species of the flowering plant is subject to the "One person, one flower" scheme

Subject: <u>Science</u> Level: <u>S.1</u>

Topic: <u>Prepare saturated solution for competition, and design and make an effective dehumidifier</u> <u>using chemicals and dried leaves</u>

Prerequisite knowledge:

S.1 Science Unit 2 Water: Factors affecting the rate of dissolving, saturated solution

Scientific investigation	Design and making	Problem solving with mathematical skills	Non-disciplinary knowledge/skills/ value	
 Scientific investigation on: Factors of kinds of solute, mass of solute and volume of solvent on the rate of dissolving Prepare a saturated solution with limited solute and solvent given by the teacher (competition) Way to measure and compare the efficacy of dehumidifiers using chemicals and dried leaves to absorb water vapour from the environment 	 A dehumidifier using calcium chloride (solute used in scientific investigation) / dried leaves (<i>Phyllanthus</i> <i>emblica</i> 油柑 葉) 	 Understand the meaning of relative humidity in percentage Estimate the mass of solute required for preparing a most saturated solution; and estimate the volume of the container (plastic bottle) needed for collecting the water absorbed (volume of solvent) in making the dehumidifier through mathematical calculations 	 Be aware of the disposal problems of commercial dehumidifier using chemical (e.g. calcium chloride) Nurture students' positive values regarding respect for life (dried leaves) and environment 	

Intended learning outcomes / products:

Cycle	Science	Mathematics	Computer Literacy	Design and Technology
9 (2 nd Term)		Understanding the concept of percentage and solve problems involving percentage change		
13-14 (2 nd Term)				Construction of a 3D printed rack for assembling a fan on the dehumidifier
17-19 (3 rd Term)			Application of micro:bit and sensors	

Curriculum mapping of STEM in Science P.3

Subject: <u>Science</u> Level: <u>S.1</u>

Topic: Design and tailor-make a good microwavable heat bag by using red beans for the elderly

Prerequisite knowledge:

S.1 Science Unit 5 Energy: Forms of energy, energy conversion, heat transfer

Scientific investigation	Design and making	Problem solving with mathematical skills	Non-disciplinary knowledge/skills/ value
Scientific investigation on: Factors of sizes (small / medium/ large) and materials (thin cotton, thick cotton, thick cotton, thick cotton with coating) of the microwavable heat bag on heat loss from the surface of the microwavable heat bags	 A microwavable heat bag using red beans for the elderly A user manual for the elderly A presentation video of the introduction of the microwavable heat bags 	Calculate the percentage change of temperature of the heat bag surface for 20 minutes during scientific investigation	 Be aware of the disposal problems of commercial heat bag using chemicals Improve students' tailoring skills Nurture students' positive values regarding respect for life (red beans) and environment, and caring for the elderly in the society Enhance students' presentation and communication skills using English

Intended learning outcomes / products:

Cycle	Science	Home Economics	Mathematics	English
4-8		Engineering		
(1 st		design:		
Term)		Designing and		
		making a		
		microwavable heat		
		bag for the elderly		
		(individual work)		
9				Making
(2^{nd})				Presentation of a
Term)				STEM product:
				facial mask

Curriculum mapping of STEM in Science P.5

9 (2 nd Term)		Understanding the concept of percentage and solve problems involving percentage change	
10 (2 nd	Scientific		
Term)	investigation:		
	Investigation on the		
	factors of sizes /		
	materials of heat bags		
	on the heat loss from		
	the surface of the		
	microwavable heat		
	bags		
	Engineering design:		
	Revision of the heat		
	bag by adjusting other		
	variables, e.g. time of		
	microwaving, mass of		
	red beans, etc.		
	Making a user manual		
	for the microwavable		
	heat bag		

Subject: ScienceLevel: S.2

Topic: <u>Design and make an environmental-friendly drip irrigation device for the growth of a pot of flowering plant</u>

Prerequisite knowledge:

S.2 Science Unit 7 Living things and air: Photosynthesis

Scientific investigation	Design and making	Problem solving with mathematical skills	Non-disciplinary knowledge/skills/ value
 Scientific investigation on: Factors of the diameter of rubber tubing, height of the water bottle, number of holes in the rubber tubing etc. on the amount of water dripped from the irrigation device for a fixed period 	• An environmental- friendly drip irrigation device using disposable wastes such as wooden chopstick and plastic bottle for the growth of a pot of flowering plant	 Calculate the volume of water collected from the drip irrigation device for 24 hours, and for 7 days (ratios and proportions) Calculate the percentage change of sizes of the leaves / height of plants during students' observation (if needed by the students) 	 Be aware of water shortage, water pollution in developing countries, and problems of disposable wastes during the pandemic Recognise the advantages of drip irrigation to conserve water Nurture students' positive values regarding respect for life and environment

Intended learning outcomes / products:

Cycle	Science	Mathematics	Computer Literacy	Design and Technology
(S.1)		Understanding the concept of percentage and solve problems involving percentage change		
(S.1) Revision on cycle 11 (2 nd Term)			Application of micro:bit and sensors Programming using Microsoft MakeCode for micro:bit (servo system)	
10		Understanding ratios and proportions and		

		1	
(2 nd Term)		solve daily life problems using	
		ratios and proportions	
11 (2 nd Term)			Construction of a 3D printed rack for assembling a servo on the drip irrigation device
12 (2 nd	Engineering design:		uevice
12 (2 nd Term)	Engineering design: Designing and making a device using disposable materials such as plastic bottle and wooden chopsticks that can (a) stand and (b) release water drop by drop into the soil for irrigation and water conservation purpose Scientific investigation: Investigation on the factors such as the position (height) of the plastic bottles, the volume of plastic bottles fully filled with water, the diameter of the rubber tubing, the number of holes in the rubber tubing (to be determined by the students) that affect amount of water dripped from the device for 15 minutes Engineering design: Revise the drip irrigation device with Micro:bit and sensors as well as Microsoft MakeCode programming so that it can have higher efficacy on water conservation for		
	on water conservation for watering the plant		

Subject: ScienceLevel: S.2

Topic: <u>Competition of gas powered jetboat using vinegar and eggshell powder as environmental-</u> <u>friendly energy sources</u>

Prerequisite knowledge:

S.2 Science Unit 9: Acid and alkali: Corrosive nature of acid, reaction of calcium carbonate and vinegar to produce carbon dioxide, Unit 11: Force and motion: relationship between average speed, distance and time, distance-time graph, uniform and non-uniform motion, force, and friction

Scientific investigation	Design and making	Problem solving with mathematical skills	Non-disciplinary knowledge/skills/ value
 Scientific investigation on: Effect of different mass of eggshell powder (calcium carbonate) and volume of vinegar on the amount of gas released as pushing force 	• A plastic bottle jetboat that uses gas released from the reaction between eggshell powder (calcium carbonate) and vinegar as pushing force to drive the jetboat	• Understand the concept of a rate and calculate the average speed of a moving object	 Be aware of the air pollution problem from the burning of fossil fuels in vehicles Nurture students' positive values regarding respect for environment

Intended learning outcomes / products:

Cycle	Science	Mathematics	Design and Technology
10		Understanding rate solve	
(2^{nd})		daily life problems using	
Term)		rate	
11-12			Construction of 3D
(2 nd			printed parts for the
Term)			gas jetboat
21 (3 rd	Scientific investigation:		
Term)	Investigation on the factors of mass		
	of eggshell powder, volume of		
	vinegar, and the		
	diameter/length/angle of the straw		
	on the release of carbon dioxide		
	gas (with solution)		
	Engineering design:		
	Designing and making a gas		
	jetboat with plastic bottle		
	Measurement of the motion of		
	jetboat with the use of water track,		
	datalogger and motion sensor		